

Feb 19-8:47 AM
class QZ 13
Find the area below $f(x)=x^{3}$, above x-axis
from $x=1$ to $x=2$. Exact Ans, only. \qquad

$$
\begin{array}{r}
\text { Sind the area below } f(x)=4-x^{2}, \text { above } \\
g(x)=x^{3} \text { from } x=0 \text { to } x=1 \quad \begin{array}{r}
f(1)=3 \\
g(1)=1
\end{array} \\
=\left(4 x-\frac{x^{3}}{3}-\frac{x^{4}}{4}\right) \int_{0}^{1}[\text { Top -Bottom }] d x \\
=\left(4(1)-\frac{1^{3}}{3}-\frac{1^{4}}{4}\right)-(0) \\
=4-\frac{1}{3}-\frac{1}{4}=\frac{48-4-3}{12} \\
=
\end{array}
$$

\qquad
\qquad

Nov 27-10:28 AM

$$
\begin{aligned}
& \text { Consider the graph } f(x)=x\left(x^{2}-1\right)^{3} \text { over } \\
& {[0,1]} \\
& f(0)=0 \\
& f(1)=0 \\
& \underbrace{\text { Top }}_{\text {Bottom }} \rightarrow \\
& f(1 / 2)=\frac{1}{2}\left(\left(\frac{1}{2}\right)^{2}-1\right)^{3}=\frac{1}{2}\left(\frac{1}{4}-1\right)^{3}=\frac{1}{2}\left(\frac{-3}{4}\right)^{3}=\frac{-27}{128} \\
& \text { find the enclosed area. } \\
& \begin{aligned}
A=\int_{0}^{1}[\begin{array}{c}
\text { Top } \\
0 \\
0
\end{array} \underbrace{x\left(x^{2}-1\right)^{3}}_{\text {Bottom }}] d x=\int_{0}^{1}-x\left(x^{2}-1\right)^{3} d x \\
u=x^{2}-1
\end{aligned} \\
& =-\int_{0}^{10} x\left(x^{2}-1\right)^{3} d x \quad l l l y=x^{2}-1 . \quad \begin{array}{ll}
& d u=2 x d x \\
& d u=x d x
\end{array} \\
& =-\int_{-1}^{0} u^{3} \frac{d u}{2} \quad \begin{array}{ll}
x=0 & u=-1 \\
x=1 & u=0
\end{array} \\
& =-\left.\frac{1}{2} \cdot \frac{x^{4}}{4}\right|_{-1} ^{0}=\frac{-1}{8}\left[0^{4}-(-1)^{4}\right]=\frac{-1}{8} \cdot(-1)=\frac{1}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sind the area below } f(x)=x^{2}\left(x^{3}+1\right)^{5} \text { over } \\
& {[0,1] \text {, above } x \text {-axis. }} \\
& \begin{array}{l}
f(0)=0 \\
f(1)=32 \\
\begin{array}{l}
f(x)>0 \text { on }(0,1) \\
A=\int_{0}^{1} x^{2}\left(x^{3}+1\right)^{5} d x
\end{array} \\
=\int_{1}^{2} u^{5} \frac{d u}{3} \\
=\left.\frac{1}{3} \cdot \frac{u^{6}}{6}\right|_{1} ^{2}=\frac{1}{18}\left[2^{6}-1^{6}\right]=\frac{64-1}{18} \\
\\
=\frac{d u}{3}=3 x^{2} d x \quad x=1 \quad u=2 \\
18
\end{array}
\end{aligned}
$$

\qquad

Nov 27-10:43 AM

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nov 27-10:59 AM

\qquad
\qquad
\qquad $x_{1}=a+1 \cdot \frac{b-a}{n}, x_{2}=a+2 \cdot \frac{b-a}{n} n$
$x_{3}=a+3 \cdot \frac{b-a}{n} \cdots x_{i}=a+i \cdot \frac{b-a}{n}$
$A\left(R_{i}\right)=f\left(x_{i}\right) \cdot \frac{b-a}{n}=f\left(a+i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n}$
Total Area $=R_{1}+R_{2}+R_{3}+\cdots+R_{n}$

$$
=\sum_{i=1}^{n} R_{i}=\sum_{i=1}^{n} S(\underbrace{a+i \cdot \frac{b-a}{n}}_{x_{i}}) \cdot \frac{b-a}{\stackrel{b}{n}} \underset{\Delta x}{\approx}
$$

Since $n \rightarrow \infty$

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \quad \text { Delta }
$$

\qquad
If limit exists
$=\int_{a}^{b} f(x) d x$

Consider $f(x)=9-x^{2}$, find the area below $f(x)$, and above x-axis in QI. $a=0, b=3, \Delta x=\frac{b-a}{n}$ $\Delta x=\frac{3}{n}$ $x_{i}=a+i \cdot \Delta x$ $\begin{aligned} & =a+i \cdot \Delta x \\ & =0+i \cdot \frac{3}{n}=\frac{3 i}{n} \end{aligned}$ $A\left(R_{i}\right)=f\left(x_{i}\right) \cdot \Delta x=f\left(\frac{3 i}{n}\right) \cdot \frac{3}{n}$ $=\left[9-\left(\frac{3 i}{n}\right)^{2}\right] \cdot \frac{3}{n}$ $=\left(9-\frac{9 i^{2}}{n^{2}}\right) \cdot \frac{3}{n}$ $=\frac{27}{n_{n}}-\frac{27 i^{2}}{n^{3}}$ $\begin{aligned} A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(R_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{27}{n}-\frac{27 i^{2}}{n^{3}}\right) \\ & =\lim _{n \rightarrow \infty}\left[\frac{27}{n} \sum_{i=1}^{n} 1-\frac{27}{n^{3}} \sum_{i=1}^{n} i^{2}\right] \\ & =\lim _{n \rightarrow \infty}\left[\frac{27}{n} \cdot n-\frac{27}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}\right] \\ & =\lim _{n \rightarrow \infty}\left[27-\frac{54 n^{2}+\cdots}{6 n^{3}}\right] \\ & =27-\frac{54}{6}=27-9=18 \end{aligned}$ $A=\int_{0}^{3}\left[9-x^{2}\right] d x=\left.\left(9 x-\frac{x^{3}}{3}\right)\right\|_{0} ^{3}$ $O=\left(9 \cdot 3-\frac{3^{3}}{3}\right)-(0)$ $=27-\frac{27}{3}=27-9=18$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(R_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{27}{n}-\frac{27 i^{2}}{n^{3}}\right)$
$\lim _{n \rightarrow \infty}\left[\frac{27}{n} \sum_{i=1}^{n} 1-\frac{27}{n^{3}} \sum_{i=1}^{n} i^{2}\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{27}{n} \cdot \pi n-\frac{27}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}\right]$
\qquad

Nov 27-11:16 AM

